Personal Home Page

+

Personal Information

Name (Pinyin):zhenzhen

School/Department:林学院

Education Level:With Certificate of Graduation for Doctorate Study

Degree:Doctoral Degree in Agriculture

Status:Employed

Discipline:
Forest Management

Honors and Titles:
2024年10月 东北林业大学2023~2024年度优秀本科生导师奖
2023年11月 获得2023年东北林业大学青年教师教学竞赛(农林组)二等奖
2023年04月 第十届“共享杯”大学生科技资源共享服务创新大赛优秀指导教师奖
2023年08月 东北林业大学2022~2023年度优秀本科生导师奖
2023年07月 指导本科生参加“挑战杯”黑龙江省大学生课外学术科技作品大赛荣获三等奖
2022年10月 东北林业大学2021~2022年度优秀本科生导师奖
2021年09月 东北林业大学2020~2021年度教学质量二等奖
2021年05月 指导本科生参加美国大学生数学建模大赛(ICM)获得一等奖(M奖)
2020年10月 东北林业大学2019~2020年度教学质量二等奖
2019年12月 东北林业大学林学院2019年度本科课程建设优秀奖
2018年06月 第七届梁希青年论文奖三等奖
2017年10月 东北林区主要树种(组)林木及林分动态预测技术,黑龙江省科学技术奖,二等奖(第8完成人),黑龙江省人民政府
2017年04月 东北林区主要树种(组)基础模型系统的研究,梁希林业科学技术奖,二等奖(第6完成人),国家林业局,中国林学会
2016年12月 GIScience & Remote Sensing杂志最佳审稿人
2016年09月 第六届梁希青年论文奖三等奖
2015年12月 第三届“共享杯”大学生科技资源共享服务创新大赛优秀指导教师奖
2015年09月 东北林业大学2014~2015年度教学质量二等奖
2014年09月 第五届梁希青年论文奖二等奖

Other Contact Information:

ZipCode:

PostalAddress:

Email:


Impact of training and validation sample selection on classification accuracy and accuracy assessment when using reference polygons in object-based classification

Date:2025-06-02 clicks:

Impact Factor:3.151

DOI number:10.1080/01431161.2013.810822

Journal:International Journal of Remote Sensing

Abstract:Reference polygons are homogenous areas that aim to provide the best available assessment of ground condition that the user can identify. Delineation of such polygons provides a convenient and efficient approach for researchers to identify training and validation data for supervised classification. However, the spatial dependence of training and validation data should be taken into account when the two data sets are obtained from a common set of reference polygons. We investigate the effect on classification accuracy and the accuracy estimates derived from the validation data when training and validation data are obtained from four selection schemes. The four schemes are composed of two sampling designs (simple random and systematic) and two methods for splitting sample points between training and validation (validation points in separate polygons from training points and validation points and training points split within the same polygons). A supervised object-based classification of the study region was repeated 30 times for each selection scheme. The selection scheme did not impact classification accuracy, but estimates of overall (OA), user’s (UA), and producer’s (PA) accuracies produced from the validation data overestimated accuracy for the study region by about 10%. The degree of overestimation was slightly greater when the validation sample points were allowed to be in the same polygons as the training data points. These results suggest that accuracy estimates derived from splitting training and validation within a limited set of reference polygons should be regarded with suspicion. To be fully confident in the validity of the accuracy estimates, additional validation sample points selected from the region outside the reference polygons may be needed to augment the validation sample selected from the reference polygons.

Co-author:Stephen V. Stehman,Lindi J. Quackenbush

First Author:Q1, Zhen Zhen

Indexed by:Journal paper

Correspondence Author:Lianjun Zhang*

Volume:34

Issue:19

Page Number:6914-6930

ISSN No.:0143-1161

Translation or Not:no

Date of Publication:2013-01-01

Included Journals:SCI

Pre One:Impact of Tree-Oriented Growth Order in Marker-Controlled Region Growing for Individual Tree Crown Delineation Using Airborne Laser Scanner (ALS) Data Next One:Geographically local modeling of occurrence, count, and volume of downwood in Northeast China