Personal Home Page

+

Personal Information

Name (Pinyin):zhenzhen

School/Department:林学院

Education Level:With Certificate of Graduation for Doctorate Study

Degree:Doctoral Degree in Agriculture

Status:Employed

Discipline:
Forest Management

Honors and Titles:
2024年10月 东北林业大学2023~2024年度优秀本科生导师奖
2023年11月 获得2023年东北林业大学青年教师教学竞赛(农林组)二等奖
2023年04月 第十届“共享杯”大学生科技资源共享服务创新大赛优秀指导教师奖
2023年08月 东北林业大学2022~2023年度优秀本科生导师奖
2023年07月 指导本科生参加“挑战杯”黑龙江省大学生课外学术科技作品大赛荣获三等奖
2022年10月 东北林业大学2021~2022年度优秀本科生导师奖
2021年09月 东北林业大学2020~2021年度教学质量二等奖
2021年05月 指导本科生参加美国大学生数学建模大赛(ICM)获得一等奖(M奖)
2020年10月 东北林业大学2019~2020年度教学质量二等奖
2019年12月 东北林业大学林学院2019年度本科课程建设优秀奖
2018年06月 第七届梁希青年论文奖三等奖
2017年10月 东北林区主要树种(组)林木及林分动态预测技术,黑龙江省科学技术奖,二等奖(第8完成人),黑龙江省人民政府
2017年04月 东北林区主要树种(组)基础模型系统的研究,梁希林业科学技术奖,二等奖(第6完成人),国家林业局,中国林学会
2016年12月 GIScience & Remote Sensing杂志最佳审稿人
2016年09月 第六届梁希青年论文奖三等奖
2015年12月 第三届“共享杯”大学生科技资源共享服务创新大赛优秀指导教师奖
2015年09月 东北林业大学2014~2015年度教学质量二等奖
2014年09月 第五届梁希青年论文奖二等奖

Other Contact Information:

ZipCode:

PostalAddress:

Email:


Geographically local modeling of occurrence, count, and volume of downwood in Northeast China

Date:2025-06-02 clicks:

Impact Factor:4.24

DOI number:10.1016/j.apgeog.2012.11.003

Journal:Applied Geography

Place of Publication:Applied Geography

Key Words:Geographically weighted regression Logistic regression Poisson regression Gaussian regression Global models Local models

Abstract:The Liangshui National Nature Reserve, located in Northeast China, was heavily damaged by severe windstorms in 2008 and 2009, which caused abundant windthrows, especially large trees, and significantly altered the size and structure of the natural forest. A forest survey was conducted to collect data on living trees, downwood on the forest floor, and environmental factors. We were interested in modeling three types of response variables, including the occurrence of downwood (binary), the number of downwood trees (count) and the volume of downwood (continuous). These response variables were regressed to a set of stand and topographic predictors, including the average diameter of living trees, total volume of living trees, elevation, and slope. Both global and local (geographically weighted regression) modeling techniques were utilized to fit the models. Our results show that local models have great advantages over corresponding global models in model fitting and performance, with desirable model residuals. The spatial variations of local model coefficients were visualized in contour maps, which provided detailed information on the relationships between downwood and stand and topographic variables in the local areas. Furthermore, these local models can be readily incorporated into GIS software and combined with statistical graphics and the mapping ability of GIS technology, to become excellent tools for assessing the risk of natural disasters or disturbances for a given local area, predicting damage caused by such disasters, and offering information critical to decision-making and management planning to prevent or reduce the impacts of natural disasters in the future.

Co-author:Zhihai Ma,Yinglei Zhao,Chang Liu,Zhaogang,Fengri Li

First Author:Q1, Zhen Zhen

Indexed by:Journal paper

Correspondence Author:Lianjun Zhang*

Volume:37

Page Number:114-126

ISSN No.:0143-6228

Translation or Not:no

Date of Publication:2013-01-01

Included Journals:SCI

Pre One:Impact of training and validation sample selection on classification accuracy and accuracy assessment when using reference polygons in object-based classification Next One:中国东北地区森林碳源汇时空格局变化及其对极端气候的响应