Personal Home Page

+

Personal Information

Name (Pinyin):zhenzhen

School/Department:林学院

Education Level:With Certificate of Graduation for Doctorate Study

Degree:Doctoral Degree in Agriculture

Status:Employed

Discipline:
Forest Management

Honors and Titles:
2024年10月 东北林业大学2023~2024年度优秀本科生导师奖
2023年11月 获得2023年东北林业大学青年教师教学竞赛(农林组)二等奖
2023年04月 第十届“共享杯”大学生科技资源共享服务创新大赛优秀指导教师奖
2023年08月 东北林业大学2022~2023年度优秀本科生导师奖
2023年07月 指导本科生参加“挑战杯”黑龙江省大学生课外学术科技作品大赛荣获三等奖
2022年10月 东北林业大学2021~2022年度优秀本科生导师奖
2021年09月 东北林业大学2020~2021年度教学质量二等奖
2021年05月 指导本科生参加美国大学生数学建模大赛(ICM)获得一等奖(M奖)
2020年10月 东北林业大学2019~2020年度教学质量二等奖
2019年12月 东北林业大学林学院2019年度本科课程建设优秀奖
2018年06月 第七届梁希青年论文奖三等奖
2017年10月 东北林区主要树种(组)林木及林分动态预测技术,黑龙江省科学技术奖,二等奖(第8完成人),黑龙江省人民政府
2017年04月 东北林区主要树种(组)基础模型系统的研究,梁希林业科学技术奖,二等奖(第6完成人),国家林业局,中国林学会
2016年12月 GIScience & Remote Sensing杂志最佳审稿人
2016年09月 第六届梁希青年论文奖三等奖
2015年12月 第三届“共享杯”大学生科技资源共享服务创新大赛优秀指导教师奖
2015年09月 东北林业大学2014~2015年度教学质量二等奖
2014年09月 第五届梁希青年论文奖二等奖

Other Contact Information:

ZipCode:

PostalAddress:

Email:


Impact of Tree-Oriented Growth Order in Marker-Controlled Region Growing for Individual Tree Crown Delineation Using Airborne Laser Scanner (ALS) Data

Date:2025-06-02 clicks:

Impact Factor:4.848

DOI number:10.3390/rs6010555

Journal:remote sensing

Key Words:treetop detection; crown boundary delineation; orthoimagery and ALS

Abstract:Region growing is frequently applied in automated individual tree crown delineation (ITCD) studies. Researchers have developed various rules for initial seed selection and stop criteria when applying the algorithm. However, research has rarely focused on the impact of tree-oriented growth order. This study implemented a marker-controlled region growing (MCRG) algorithm that considers homogeneity, crown size, and shape using airborne laser scanning (ALS) data, and investigated the impact of three growth orders (i.e., sequential, independent, and simultaneous) on tree crown delineation. The study also investigated the benefit of combining ALS data and orthoimagery in treetop detection at both plot and individual tree levels. The results showed that complementary data from the orthoimagery reduced omission error associated with small trees in the treetop detection procedure and improved treetop detection percentage on a plot level by 2%–5% compared to ALS alone. For tree crown delineation, the growth order applied in the MCRG algorithm influenced accuracy. Simultaneous growth yielded slightly higher accuracy (about 2% improvement for producer’s and user’s accuracy) than sequential growth. Independent growth provided comparable accuracy to simultaneous growth in this study by dealing with overlapping pixels among trees OPEN ACCESS according to crown shape. This study provides several recommendations for applying region growing in future ITCD research.

Co-author:Lianjun Zhang

First Author:Q1, Zhen Zhen

Indexed by:Journal paper

Correspondence Author:Lindi J. Quackenbush*

Volume:6

Issue:1

Page Number:555-579

ISSN No.:2072-4292

Translation or Not:no

Date of Publication:2014-01-01

Included Journals:SCI

Pre One:Agent-based region growing for individual tree crown delineation from airborne laser scanning (ALS) data Next One:Impact of training and validation sample selection on classification accuracy and accuracy assessment when using reference polygons in object-based classification