Personal Home Page

+

Personal Information

Name (Pinyin):zhenzhen

School/Department:林学院

Education Level:With Certificate of Graduation for Doctorate Study

Degree:Doctoral Degree in Agriculture

Status:Employed

Discipline:
Forest Management

Honors and Titles:
2024年10月 东北林业大学2023~2024年度优秀本科生导师奖
2023年11月 获得2023年东北林业大学青年教师教学竞赛(农林组)二等奖
2023年04月 第十届“共享杯”大学生科技资源共享服务创新大赛优秀指导教师奖
2023年08月 东北林业大学2022~2023年度优秀本科生导师奖
2023年07月 指导本科生参加“挑战杯”黑龙江省大学生课外学术科技作品大赛荣获三等奖
2022年10月 东北林业大学2021~2022年度优秀本科生导师奖
2021年09月 东北林业大学2020~2021年度教学质量二等奖
2021年05月 指导本科生参加美国大学生数学建模大赛(ICM)获得一等奖(M奖)
2020年10月 东北林业大学2019~2020年度教学质量二等奖
2019年12月 东北林业大学林学院2019年度本科课程建设优秀奖
2018年06月 第七届梁希青年论文奖三等奖
2017年10月 东北林区主要树种(组)林木及林分动态预测技术,黑龙江省科学技术奖,二等奖(第8完成人),黑龙江省人民政府
2017年04月 东北林区主要树种(组)基础模型系统的研究,梁希林业科学技术奖,二等奖(第6完成人),国家林业局,中国林学会
2016年12月 GIScience & Remote Sensing杂志最佳审稿人
2016年09月 第六届梁希青年论文奖三等奖
2015年12月 第三届“共享杯”大学生科技资源共享服务创新大赛优秀指导教师奖
2015年09月 东北林业大学2014~2015年度教学质量二等奖
2014年09月 第五届梁希青年论文奖二等奖

Other Contact Information:

ZipCode:

PostalAddress:

Email:


A hybrid method for forest aboveground biomass estimation: fusion of individual tree- and area-based approaches over northeast China

Date:2025-06-02 clicks:

Impact Factor:6.0

DOI number:10.1080/15481603.2025.2497629

Journal:GIScience & Remote Sensing

Key Words:AGB; LiDAR; ICESat-2; error-in -variance model; Bayesian Kriging

Abstract:Currently, large-scale above-ground biomass (AGB) estimation mainly depends on the area-based approach (ABA). However, with advancements in individual tree detection technology and the availability of multi-platform remote sensing data, the individual tree-based approach (ITA) presents new opportunities for accurate, nondestructive AGB estimation. Nevertheless, research on integrating ITA with ABA for scaling AGB estimates from individual trees to the regional level remains limited. This study introduced an innovative hybrid framework incorporating ITA and ABA for regional-scale estimation of forest AGB through the combination of handheld, unmanned, and satellite LiDAR, together with Landsat 8 imagery. The results demonstrated that the segmentation of individual trees using a fusion of unmanned aerial vehicle laser scanning (ULS) and handheld laser scanning (HLS) was effective (r = 0.84, p = 0.76, F-score = 0.79) for the secondary forests in northeast China (NEC), particularly achieving high accuracy of diameter at breast height (DBH) with R2 = 0.93 and RMSE of only 1.84 cm. Both individual tree and plot-level AGB estimates achieved satisfactory accuracy, with biases of −3.9 kg and −16,56 Mg/ha, respectively. The error-in-variable (EIV) model was established for stand-level AGB estimation using the plot AGB estimates from ITA (R2 = 0.69; RMSE = 19.59 Mg/ha; rRMSE = 15.1%) and employed to estimate footprint-level AGB based on the canopy height data extracted from ICESat-2/ATL08, significantly expanding the limited sample size (by 150 times) for regional AGB estimation. Two periods (2019–2020, 2021–2022) of continuous AGB of NEC were mapped using the integrated method of random forests (RF) and empirical Bayesian Kriging (EBK). The accuracy of the RF-EBK model is markedly enhanced in comparison to that of the RF model for AGB estimation (R2 increased by about 37% − 49%, RMSE and rRMSE declined by 25%). This study provides technical support for upscaling AGB estimation from individual tree to extensive forest and lays a solid foundation for precise forestry, sustainable forest management, and the attainment of carbon neutrality.

Co-author:Ye Ma,Xiang Li

First Author:Q1, Zhen Zhen

Indexed by:Journal paper

Correspondence Author:Xiaochun Wang*,Yinghui Zhao*

Volume:62

Issue:1

Page Number:2497629

ISSN No.:1548-1603

Translation or Not:no

Date of Publication:2025-01-01

Included Journals:SCI

Pre One:Unraveling Phenological Dynamics: Exploring Early Springs, Late Autumns, and Climate Drivers Across Different Vegetation Types in Northeast China Next One:A framework for upscaling aboveground biomass from an individual tree to landscape level and qualifying the multiscale spatial uncertainties for secondary forests