Personal Home Page

+

Personal Information

Name (Pinyin):zhenzhen

School/Department:林学院

Education Level:With Certificate of Graduation for Doctorate Study

Degree:Doctoral Degree in Agriculture

Status:Employed

Discipline:
Forest Management

Honors and Titles:
2024年10月 东北林业大学2023~2024年度优秀本科生导师奖
2023年11月 获得2023年东北林业大学青年教师教学竞赛(农林组)二等奖
2023年04月 第十届“共享杯”大学生科技资源共享服务创新大赛优秀指导教师奖
2023年08月 东北林业大学2022~2023年度优秀本科生导师奖
2023年07月 指导本科生参加“挑战杯”黑龙江省大学生课外学术科技作品大赛荣获三等奖
2022年10月 东北林业大学2021~2022年度优秀本科生导师奖
2021年09月 东北林业大学2020~2021年度教学质量二等奖
2021年05月 指导本科生参加美国大学生数学建模大赛(ICM)获得一等奖(M奖)
2020年10月 东北林业大学2019~2020年度教学质量二等奖
2019年12月 东北林业大学林学院2019年度本科课程建设优秀奖
2018年06月 第七届梁希青年论文奖三等奖
2017年10月 东北林区主要树种(组)林木及林分动态预测技术,黑龙江省科学技术奖,二等奖(第8完成人),黑龙江省人民政府
2017年04月 东北林区主要树种(组)基础模型系统的研究,梁希林业科学技术奖,二等奖(第6完成人),国家林业局,中国林学会
2016年12月 GIScience & Remote Sensing杂志最佳审稿人
2016年09月 第六届梁希青年论文奖三等奖
2015年12月 第三届“共享杯”大学生科技资源共享服务创新大赛优秀指导教师奖
2015年09月 东北林业大学2014~2015年度教学质量二等奖
2014年09月 第五届梁希青年论文奖二等奖

Other Contact Information:

ZipCode:

PostalAddress:

Email:


A framework for upscaling aboveground biomass from an individual tree to landscape level and qualifying the multiscale spatial uncertainties for secondary forests

Date:2025-06-02 clicks:

Impact Factor:4.4

DOI number:10.1080/10095020.2024.2449447

Journal:Geo-spatial Information Science

Key Words:Aboveground biomass; secondary forests; individual tree-based approach; uncertainty analysis; nonlinear simultaneous equation

Abstract:Secondary forests, a typical forest type in the sub-frigid zone of Northeast China, have significant potential for carbon sequestration. Accurate estimation of the Aboveground Biomass (AGB) of secondary forests and assessment of multiscale uncertainties are crucial for promoting Reduced Emissions from Deforestation and Degradation. This study developed a novel framework to upscale the AGB estimation from the tree to the landscape level and assessed multiscale uncertainties based on multi-platform laser scanning data and Unmanned Aerial Vehicle (UAV) hyperspectral images. The framework included two stages: (1) quantifying multiple uncertainties (uncertainties of individual tree crown delineation, individual tree parameters estimation, and tree species classification) in individual tree-based AGB estimation using Monte Carlo simulations; (2) upscaling the plot to the landscape level estimated AGB using the Nonlinear Simultaneous Equation (NSE) with error-in-variables and quantifying the uncertainties of model residuals, model parameters, and model independent variables. The findings revealed a high accuracy from tree to plot AGB estimation (R2: 0.75, Root Mean Square Error (RMSE): 6.65 Mg/ha, relative RMSE (rRMSE): 5.40%), with the total and relative uncertainties of 16.85 Mg/ha and 16.29%, respectively, with the highest uncertainty (9.73 Mg/ha) observed in tree species classification. The AGB estimation using NSE achieved an R2 of 0.69, with an RMSE of 9.91 Mg/ha and an rRMSE of 10.43% from the plot to landscape level; and the uncertainties caused by model parameters, independent variables, and residuals were 5.52 Mg/ ha, 14.56 Mg/ha, and 25.25 Mg/ha, respectively, accounting for 3.46%, 24.09%, and 72.45% of the total uncertainty. This study develops a framework for large-scale AGB estimation of mixed forests based on the individual tree approach and uncertainty quantification of multiscale estimates and provides a foundation for precise forestry, sustainable forest management, and carbon neutrality.

Co-author:Jungho Im

First Author:Q1, Ye Ma

Indexed by:Journal paper

Correspondence Author:Yinghui Zhao*,Zhen Zhen*

Volume:28

Issue:1

Page Number:97-116

ISSN No.:1009-5020, 1993-5153

Translation or Not:no

Date of Publication:2025-01-01

Included Journals:SCI

Pre One:A hybrid method for forest aboveground biomass estimation: fusion of individual tree- and area-based approaches over northeast China Next One:Improving the Accuracy of Aboveground Biomass Estimation of Natural Secondary Forests Using Individual Tree Features