Personal Home Page

+

Personal Information

Name (Pinyin):zhenzhen

School/Department:林学院

Education Level:With Certificate of Graduation for Doctorate Study

Degree:Doctoral Degree in Agriculture

Status:Employed

Discipline:
Forest Management

Honors and Titles:
2024年10月 东北林业大学2023~2024年度优秀本科生导师奖
2023年11月 获得2023年东北林业大学青年教师教学竞赛(农林组)二等奖
2023年04月 第十届“共享杯”大学生科技资源共享服务创新大赛优秀指导教师奖
2023年08月 东北林业大学2022~2023年度优秀本科生导师奖
2023年07月 指导本科生参加“挑战杯”黑龙江省大学生课外学术科技作品大赛荣获三等奖
2022年10月 东北林业大学2021~2022年度优秀本科生导师奖
2021年09月 东北林业大学2020~2021年度教学质量二等奖
2021年05月 指导本科生参加美国大学生数学建模大赛(ICM)获得一等奖(M奖)
2020年10月 东北林业大学2019~2020年度教学质量二等奖
2019年12月 东北林业大学林学院2019年度本科课程建设优秀奖
2018年06月 第七届梁希青年论文奖三等奖
2017年10月 东北林区主要树种(组)林木及林分动态预测技术,黑龙江省科学技术奖,二等奖(第8完成人),黑龙江省人民政府
2017年04月 东北林区主要树种(组)基础模型系统的研究,梁希林业科学技术奖,二等奖(第6完成人),国家林业局,中国林学会
2016年12月 GIScience & Remote Sensing杂志最佳审稿人
2016年09月 第六届梁希青年论文奖三等奖
2015年12月 第三届“共享杯”大学生科技资源共享服务创新大赛优秀指导教师奖
2015年09月 东北林业大学2014~2015年度教学质量二等奖
2014年09月 第五届梁希青年论文奖二等奖

Other Contact Information:

ZipCode:

PostalAddress:

Email:


Switcher-HNet: A switchable hierarchical network for tree species classiffcation from forest stand to individual tree tasks

Date:2025-10-31 clicks:

DOI number:10.1016/j.isprsjprs.2025.10.040

Affiliation of Author(s):东北林业大学

Journal:ISPRS Journal of Photogrammetry and Remote Sensing(Q1,TOP)

Key Words:Tree species classiffcation; Individual tree; Forest stand; Deep learning; Transfer learning

Abstract:Tree species information is essential for effective forest management, ecosystem health, and species biodiversity. Currently, most classiffcation models treat tree species as independent categories and overlook the hierarchical relationships among these species, hindering the accuracy and effectiveness of tree species classiffcation. To address this issue, this study proposes Switcher-HNet, a switchable hierarchical convolutional network integrating a backbone network, a hierarchical module, and a switcher mechanism to leverage tree species hierarchies and enhance their identiffcation. This study introduces two hierarchical datasets structured at three levels: land cover (level 0), foliage type (level 1), and tree species (level 2). The TreeSatAI dataset, collected in Germany, is designed for forest stand classiffcation with dominant species such as pine, beech, spruce, and oak. The Hierarchical Individual Tree (HIT) dataset, acquired in northeastern China, targets individual tree classiffcation and is primarily composed of Pinus koraiensis and various broadleaf species. These two datasets provide a structured label hierarchy and a multi-scale perspective across biogeographically distinct regions. SENet, the topperforming backbone among the evaluated networks, was selected as the shared backbone for both SwitcherHNet and a hierarchical baseline on these datasets. Results show that Switcher-HNet outperformed the baseline on the TreeSatAI dataset, achieving a 0.89% improvement in overall accuracy (OA) at level 1 and a signiffcant 2.95% increase at level 2. To evaluate transferability, Switcher-HNet, pretrained on the TreeSatAI dataset, was ffne-tuned on the HIT dataset for individual tree classiffcation. Switcher-HNet achieved high accuracy with OAs of 94.00% at level 1 and 90.59% at level 2 on the full HIT dataset, reducing training time to less than one-third of that required for training from scratch. Therefore, the ffne-tuning techniques enable a smooth transition from forest stand to individual tree classiffcation. This study emphasizes the potential of hierarchical classiffcation methods to enhance tree species identiffcation and provides a technical support for sustainable forest management and biodiversity conservation.

Co-author:Xiang Li

First Author:Shengheng Liu

Indexed by:Journal paper

Correspondence Author:Zhen Zhen*,Yinghui Zhao*

Volume:231

Page Number:329-344

Translation or Not:no

Date of Publication:2025-01-01

Included Journals:SCI

Next One:Unraveling Phenological Dynamics: Exploring Early Springs, Late Autumns, and Climate Drivers Across Different Vegetation Types in Northeast China