Personal Home Page

+

Personal Information

Name (Pinyin):zhenzhen

School/Department:林学院

Education Level:With Certificate of Graduation for Doctorate Study

Degree:Doctoral Degree in Agriculture

Status:Employed

Discipline:
Forest Management

Honors and Titles:
2024年10月 东北林业大学2023~2024年度优秀本科生导师奖
2023年11月 获得2023年东北林业大学青年教师教学竞赛(农林组)二等奖
2023年04月 第十届“共享杯”大学生科技资源共享服务创新大赛优秀指导教师奖
2023年08月 东北林业大学2022~2023年度优秀本科生导师奖
2023年07月 指导本科生参加“挑战杯”黑龙江省大学生课外学术科技作品大赛荣获三等奖
2022年10月 东北林业大学2021~2022年度优秀本科生导师奖
2021年09月 东北林业大学2020~2021年度教学质量二等奖
2021年05月 指导本科生参加美国大学生数学建模大赛(ICM)获得一等奖(M奖)
2020年10月 东北林业大学2019~2020年度教学质量二等奖
2019年12月 东北林业大学林学院2019年度本科课程建设优秀奖
2018年06月 第七届梁希青年论文奖三等奖
2017年10月 东北林区主要树种(组)林木及林分动态预测技术,黑龙江省科学技术奖,二等奖(第8完成人),黑龙江省人民政府
2017年04月 东北林区主要树种(组)基础模型系统的研究,梁希林业科学技术奖,二等奖(第6完成人),国家林业局,中国林学会
2016年12月 GIScience & Remote Sensing杂志最佳审稿人
2016年09月 第六届梁希青年论文奖三等奖
2015年12月 第三届“共享杯”大学生科技资源共享服务创新大赛优秀指导教师奖
2015年09月 东北林业大学2014~2015年度教学质量二等奖
2014年09月 第五届梁希青年论文奖二等奖

Other Contact Information:

ZipCode:

PostalAddress:

Email:


Novel Features of Canopy Height Distribution for Aboveground Biomass Estimation Using Machine Learning: A Case Study in Natural Secondary Forests

Date:2025-06-02 clicks:

Impact Factor:5.349

DOI number:10.3390/rs15184364

Journal:Remote Sensing

Key Words:AGB; UAV-LiDAR; machine learning models; deep learning models; canopy height distribution; bimodal gaussian function

Abstract:Identifying important factors (e.g., features and prediction models) for forest aboveground biomass (AGB) estimation can provide a vital reference for accurate AGB estimation. This study proposed a novel feature of the canopy height distribution (CHD), a function of canopy height, that is useful for describing canopy structure for AGB estimation of natural secondary forests (NSFs) by fitting a bimodal Gaussian function. Three machine learning models (Support Vector Regression (SVR), Random Forest (RF), and eXtreme Gradient Boosting (Xgboost)) and three deep learning models (One-dimensional Convolutional Neural Network (1D-CNN4), 1D Visual Geometry Group Network (1D-VGG16), and 1D Residual Network (1D-Resnet34)) were applied. A completely randomized design was utilized to investigate the effects of four feature sets (original CHD features, original LiDAR features, the proposed CHD features fitted by the bimodal Gaussian function, and the LiDAR features selected by the recursive feature elimination algorithm) and models on estimating the AGB of NSFs. Results revealed that the models were the most important factor for AGB estimation, followed by the features. The fitted CHD features significantly outperformed the other three feature sets in most cases. When employing the fitted CHD features, the 1D-Renset34 model demonstrates optimal performance (R2 = 0.80, RMSE = 9.58 Mg/ha, rRMSE = 0.09), surpassing not only other deep learning models (e.g.,1D-VGG16: R2 = 0.65, RMSE = 18.55 Mg/ha, rRMSE = 0.17) but also the best machine learning model (RF: R2 = 0.50, RMSE = 19.42 Mg/ha, rRMSE = 0.16). This study highlights the significant role of the new CHD features fitting a bimodal Gaussian function and the effects between the models and the CHD features, which provide the sound foundations for effective estimation of AGB in NSFs.

Co-author:Lianjun Zhang,Jungho Im,Yinghui Zhao

First Author:Q1, Ye Ma

Indexed by:Journal paper

Correspondence Author:Zhen Zhen*

Volume:15

Issue:18

Page Number:4364

ISSN No.:2072-4292

Translation or Not:no

Date of Publication:2023-01-01

Included Journals:SCI

Pre One:A deep-learning-based tree species classification for natural secondary forests using unmanned aerial vehicle hyperspectral images and LiDAR Next One:Spatiotemporal Heterogeneity and the Key Influencing Factors of PM2.5 and PM10 in Heilongjiang, China from 2014 to 2018