Personal Home Page

+

Personal Information

Name (Pinyin):zhenzhen

School/Department:林学院

Education Level:With Certificate of Graduation for Doctorate Study

Degree:Doctoral Degree in Agriculture

Status:Employed

Discipline:
Forest Management

Honors and Titles:
2024年10月 东北林业大学2023~2024年度优秀本科生导师奖
2023年11月 获得2023年东北林业大学青年教师教学竞赛(农林组)二等奖
2023年04月 第十届“共享杯”大学生科技资源共享服务创新大赛优秀指导教师奖
2023年08月 东北林业大学2022~2023年度优秀本科生导师奖
2023年07月 指导本科生参加“挑战杯”黑龙江省大学生课外学术科技作品大赛荣获三等奖
2022年10月 东北林业大学2021~2022年度优秀本科生导师奖
2021年09月 东北林业大学2020~2021年度教学质量二等奖
2021年05月 指导本科生参加美国大学生数学建模大赛(ICM)获得一等奖(M奖)
2020年10月 东北林业大学2019~2020年度教学质量二等奖
2019年12月 东北林业大学林学院2019年度本科课程建设优秀奖
2018年06月 第七届梁希青年论文奖三等奖
2017年10月 东北林区主要树种(组)林木及林分动态预测技术,黑龙江省科学技术奖,二等奖(第8完成人),黑龙江省人民政府
2017年04月 东北林区主要树种(组)基础模型系统的研究,梁希林业科学技术奖,二等奖(第6完成人),国家林业局,中国林学会
2016年12月 GIScience & Remote Sensing杂志最佳审稿人
2016年09月 第六届梁希青年论文奖三等奖
2015年12月 第三届“共享杯”大学生科技资源共享服务创新大赛优秀指导教师奖
2015年09月 东北林业大学2014~2015年度教学质量二等奖
2014年09月 第五届梁希青年论文奖二等奖

Other Contact Information:

ZipCode:

PostalAddress:

Email:


Upscaling aboveground biomass of larch ( Larix olgensis Henry) plantations from field to satellite measurements: a comparison of individual tree-based and area-based approaches

Date:2025-06-02 clicks:

Impact Factor:6.238

DOI number:10.1080/15481603.2022.2055381

Journal:GIScience & Remote Sensing

Key Words:LiDAR; AGB; spatial uncertainty; ITA; ABA

Abstract:Currently, aboveground biomass (AGB) estimation primarily relies on an area-based approach (ABA), particularly at a large scale. With the advancement of individual tree detection techniques and the availability of multi-platform remotely sensed data, the individual tree-based approach (ITA) provides the potential of accurate and nondestructive fine AGB mapping. However, the performances of the two approaches on upscaling AGB from individual tree to stand level have not been thoroughly investigated. This study conducted the nondestructive AGB estimation using both ITA and ABA and compared the AGB estimates and their spatial uncertainties from an individual tree- to stand-level based on multi-platform LiDAR and Landsat 8 OLI imagery, taking Larix olgensis that is one of the most notable afforestation tree species in northeastern China as an example. Results showed that the point cloud segmentation (PCS) outperformed CHM-based individual tree crown delineation algorithms and obtained the highest accuracy of individual tree AGB estimate (R2 = 0.97, RMSE = 28.58 kg, rRMSE = 21.13%) for the dense larch plantations (about 1265 trees/ha). The plot-level AGB estimate aggregated by all detected trees and its uncertainty based on Monte Carlo simulation were 158.16 and 3.64 Mg·ha−1, respectively. The average pixel-level AGB of larch plantations in Maorshan Forest Farm estimated by ITA and ABA were similar (129.66 v.s 144.38 Mg·ha−1). ITA outperformed ABA in terms of pixel-level AGB accuracy and spatial uncertainty of pixel-level and stand-level AGB estimates. The overestimation of low AGB values, typical in ABA, was effectively eliminated by the ITA. The upscaling frameworks proposed in this study for AGB estimation and spatial uncertainty quantification based on ITA and ABA could be extended to other plantations or uncomplex forests. This study contributes to the accurate quantification of AGB and understanding of the uncertainties in the carbon stock of forest ecosystems at multi-scales.

Co-author:Hung Il Jin,Qingbin Wei,Ye Ma,Lan Yang

First Author:Q1, Zhen Zhen

Indexed by:Journal paper

Correspondence Author:Yinghui Zhao*

Volume:59

Issue:1

Page Number:722-743

ISSN No.:1548-1603, 1943-7226

Translation or Not:no

Date of Publication:2022-01-01

Included Journals:SCI

Pre One:Multi-Platform LiDAR for Non-Destructive Individual Aboveground Biomass Estimation for Changbai Larch (Larix Olgensis Henry) Using a Hierarchical Bayesian Approach Next One:Estimation of Individual Tree Biomass in Natural Secondary Forests Based on ALS Data and WorldView-3 Imagery