Personal Home Page

+

Personal Information

Name (Pinyin):zhenzhen

School/Department:林学院

Education Level:With Certificate of Graduation for Doctorate Study

Degree:Doctoral Degree in Agriculture

Status:Employed

Discipline:
Forest Management

Honors and Titles:
2024年10月 东北林业大学2023~2024年度优秀本科生导师奖
2023年11月 获得2023年东北林业大学青年教师教学竞赛(农林组)二等奖
2023年04月 第十届“共享杯”大学生科技资源共享服务创新大赛优秀指导教师奖
2023年08月 东北林业大学2022~2023年度优秀本科生导师奖
2023年07月 指导本科生参加“挑战杯”黑龙江省大学生课外学术科技作品大赛荣获三等奖
2022年10月 东北林业大学2021~2022年度优秀本科生导师奖
2021年09月 东北林业大学2020~2021年度教学质量二等奖
2021年05月 指导本科生参加美国大学生数学建模大赛(ICM)获得一等奖(M奖)
2020年10月 东北林业大学2019~2020年度教学质量二等奖
2019年12月 东北林业大学林学院2019年度本科课程建设优秀奖
2018年06月 第七届梁希青年论文奖三等奖
2017年10月 东北林区主要树种(组)林木及林分动态预测技术,黑龙江省科学技术奖,二等奖(第8完成人),黑龙江省人民政府
2017年04月 东北林区主要树种(组)基础模型系统的研究,梁希林业科学技术奖,二等奖(第6完成人),国家林业局,中国林学会
2016年12月 GIScience & Remote Sensing杂志最佳审稿人
2016年09月 第六届梁希青年论文奖三等奖
2015年12月 第三届“共享杯”大学生科技资源共享服务创新大赛优秀指导教师奖
2015年09月 东北林业大学2014~2015年度教学质量二等奖
2014年09月 第五届梁希青年论文奖二等奖

Other Contact Information:

ZipCode:

PostalAddress:

Email:


Global and Geographically and Temporally Weighted Regression Models for Modeling PM2.5 in Heilongjiang, China from 2015 to 2018

Date:2025-06-02 clicks:

Impact Factor:3.39

DOI number:10.3390/ijerph16245107

Journal:International Journal of Environmental Research and Public Health

Key Words:GTWR; GWR; TWR; LMM; PM2.5; air pollutants

Abstract:Objective: This study investigated the relationships between PM2.5 and 5 criteria air pollutants (SO2, NO2, PM10, CO, and O3) in Heilongjiang, China, from 2015 to 2018 using global and geographically and temporally weighted regression models. Methods: Ordinary least squares regression (OLS), linear mixed models (LMM), geographically weighted regression (GWR), temporally weighted regression (TWR), and geographically and temporally weighted regression (GTWR) were applied to model the relationships between PM2.5 and 5 air pollutants. Results: The LMM and all GWR-based models (i.e., GWR, TWR, and GTWR) showed great advantages over OLS in terms of higher model R2 and more desirable model residuals, especially TWR and GTWR. The GWR, LMM, TWR, and GTWR improved the model explanation power by 3%, 5%, 12%, and 12%, respectively, from the R2 (0.85) of OLS. TWR yielded slightly better model performance than GTWR and reduced the root mean squared errors (RMSE) and mean absolute error (MAE) of the model residuals by 67% compared with OLS; while GWR only reduced RMSE and MAE by 15% against OLS. LMM performed slightly better than GWR by accounting for both temporal autocorrelation between observations over time and spatial heterogeneity across the 13 cities under study, which provided an alternative for modeling PM2.5. Conclusions: The traditional OLS and GWR are inadequate for describing the non-stationarity of PM2.5. The temporal dependence was more important and significant than spatial heterogeneity in our data. Our study provided evidence of spatial–temporal heterogeneity and possible solutions for modeling the relationships between PM2.5 and 5 criteria air pollutants for Heilongjiang province, China.

Co-author:Wenbiao Duan,Lianjun Zhang

First Author:Q1, Qingbin Wei

Indexed by:Journal paper

Correspondence Author:Zhen Zhen*

Volume:16

Issue:24

Page Number:5107

ISSN No.:1660-4601

Translation or Not:no

Date of Publication:2019-01-01

Included Journals:SCI、SSCI

Pre One:The Effect of Synergistic Approaches of Features and Ensemble Learning Algorithms on Aboveground Biomass Estimation of Natural Secondary Forests Based on ALS and Landsat 8 Next One:Spatial Hurdle Models for Predicting the Number of Children with Lead Poisoning