Personal Home Page

+

Personal Information

Name (Pinyin):zhenzhen

School/Department:林学院

Education Level:With Certificate of Graduation for Doctorate Study

Degree:Doctoral Degree in Agriculture

Status:Employed

Discipline:
Forest Management

Honors and Titles:
2024年10月 东北林业大学2023~2024年度优秀本科生导师奖
2023年11月 获得2023年东北林业大学青年教师教学竞赛(农林组)二等奖
2023年04月 第十届“共享杯”大学生科技资源共享服务创新大赛优秀指导教师奖
2023年08月 东北林业大学2022~2023年度优秀本科生导师奖
2023年07月 指导本科生参加“挑战杯”黑龙江省大学生课外学术科技作品大赛荣获三等奖
2022年10月 东北林业大学2021~2022年度优秀本科生导师奖
2021年09月 东北林业大学2020~2021年度教学质量二等奖
2021年05月 指导本科生参加美国大学生数学建模大赛(ICM)获得一等奖(M奖)
2020年10月 东北林业大学2019~2020年度教学质量二等奖
2019年12月 东北林业大学林学院2019年度本科课程建设优秀奖
2018年06月 第七届梁希青年论文奖三等奖
2017年10月 东北林区主要树种(组)林木及林分动态预测技术,黑龙江省科学技术奖,二等奖(第8完成人),黑龙江省人民政府
2017年04月 东北林区主要树种(组)基础模型系统的研究,梁希林业科学技术奖,二等奖(第6完成人),国家林业局,中国林学会
2016年12月 GIScience & Remote Sensing杂志最佳审稿人
2016年09月 第六届梁希青年论文奖三等奖
2015年12月 第三届“共享杯”大学生科技资源共享服务创新大赛优秀指导教师奖
2015年09月 东北林业大学2014~2015年度教学质量二等奖
2014年09月 第五届梁希青年论文奖二等奖

Other Contact Information:

ZipCode:

PostalAddress:

Email:


Trends in Automatic Individual Tree Crown Detection and Delineation—Evolution of LiDAR Data

Date:2025-06-02 clicks:

Impact Factor:4.848

DOI number:10.3390/rs8040333

Journal:Remote Sensing

Key Words:tree detection; crown delineation; remotely sensed data; ITCD algorithm; forest type; accuracy assessment

Abstract:Automated individual tree crown detection and delineation (ITCD) using remotely sensed data plays an increasingly significant role in efficiently, accurately, and completely monitoring forests. This paper reviews trends in ITCD research from 1990–2015 from several perspectives—data/forest type, method applied, accuracy assessment and research objective—with a focus on studies using LiDAR data. This review shows that active sources are becoming more prominent in ITCD studies. Studies using active data—LiDAR in particular—accounted for 80% of the total increase over the entire time period, those using passive data or fusion of passive and active data comprised relatively small proportions of the total increase (8% and 12%, respectively). Additionally, ITCD research has moved from incremental adaptations of algorithms developed for passive data sources to innovative approaches that take advantage of the novel characteristics of active datasets like LiDAR. These improvements make it possible to explore more complex forest conditions (e.g., closed hardwood forests, suburban/urban forests) rather than a single forest type although most published ITCD studies still focused on closed softwood (41%) or mixed forest (22%). Approximately one-third of studies applied individual tree level (30%) assessment, with only a quarter reporting more comprehensive multi-level assessment (23%). Almost one-third of studies (32%) that concentrated on forest parameter estimation based on ITCD results had no ITCD-specific evaluation. Comparison of methods continues to be complicated by both choice of reference data and assessment metric; it is imperative to establish a standardized two-level assessment framework to evaluate and compare ITCD algorithms in order to provide specific recommendations about suitable applications of particular algorithms. However, the evolution of active remotely sensed data and novel platforms implies that automated ITCD will continue to be a promising technology and an attractive research topic for both the forestry and remote sensing communities.

Co-author:Lianjun Zhang

First Author:Q1, Zhen Zhen

Indexed by:Journal paper

Correspondence Author:Lindi J. Quackenbush*

Volume:8

Issue:4

Page Number:333

ISSN No.:2072-4292

Translation or Not:no

Date of Publication:2016-01-01

Included Journals:SCI

Pre One:Development of accuracy assessment tool of individual tree crown delineation Next One:Agent-based region growing for individual tree crown delineation from airborne laser scanning (ALS) data