Personal Home Page

+

Personal Information

Name (Pinyin):zhenzhen

School/Department:林学院

Education Level:With Certificate of Graduation for Doctorate Study

Degree:Doctoral Degree in Agriculture

Status:Employed

Discipline:
Forest Management

Honors and Titles:
2024年10月 东北林业大学2023~2024年度优秀本科生导师奖
2023年11月 获得2023年东北林业大学青年教师教学竞赛(农林组)二等奖
2023年04月 第十届“共享杯”大学生科技资源共享服务创新大赛优秀指导教师奖
2023年08月 东北林业大学2022~2023年度优秀本科生导师奖
2023年07月 指导本科生参加“挑战杯”黑龙江省大学生课外学术科技作品大赛荣获三等奖
2022年10月 东北林业大学2021~2022年度优秀本科生导师奖
2021年09月 东北林业大学2020~2021年度教学质量二等奖
2021年05月 指导本科生参加美国大学生数学建模大赛(ICM)获得一等奖(M奖)
2020年10月 东北林业大学2019~2020年度教学质量二等奖
2019年12月 东北林业大学林学院2019年度本科课程建设优秀奖
2018年06月 第七届梁希青年论文奖三等奖
2017年10月 东北林区主要树种(组)林木及林分动态预测技术,黑龙江省科学技术奖,二等奖(第8完成人),黑龙江省人民政府
2017年04月 东北林区主要树种(组)基础模型系统的研究,梁希林业科学技术奖,二等奖(第6完成人),国家林业局,中国林学会
2016年12月 GIScience & Remote Sensing杂志最佳审稿人
2016年09月 第六届梁希青年论文奖三等奖
2015年12月 第三届“共享杯”大学生科技资源共享服务创新大赛优秀指导教师奖
2015年09月 东北林业大学2014~2015年度教学质量二等奖
2014年09月 第五届梁希青年论文奖二等奖

Other Contact Information:

ZipCode:

PostalAddress:

Email:


基于非参数分类算法和多源遥感数据的单木树种分类

Date:2025-04-01 clicks:

Journal:南京林业大学学报(自然科学版)

Key Words:激光雷达; 单木分割; 随机森林; 特征筛选; 支持向量机

Abstract:【目的】通过研究随机森林(random forest, RF)特征筛选对单木树种分类精度的影响,以及多源遥感数据协同下单木树种分类的有效性,分析不同特征对单木树种分类的影响程度。【方法】以东北林业大学帽儿山实验林场中林施业区的两块100 m×100 m样地为研究对象,首先,以机载激光雷达(LiDAR,light detection and ranging)和多光谱遥感CCD(charge coupled device)影像为数据源,分别基于机载LiDAR数据提取高度、强度和树冠大小等共37个特征,基于CCD影像提取光谱和纹理共21个特征;其次,以随机森林方法进行特征筛选,之后以随机森林和支持向量机(support vector machine, SVM)两种非参数分类器,结合不同数据源和特征,采用12种分类方案,利用总体精度(overall accuracy, OA)、用户精度(user's accuracy, UA)和生产者精度(producer’s accuracy, PA)对分类结果进行对比与精度评价。【结果】经随机森林特征筛选后,分类结果优于未进行特征筛选的结果,总体精度可以平均提高3.47%,使用机载LiDAR和CCD影像协同分类相较于仅使用CCD影像总体精度平均提高6.07%。【结论】随机森林特征筛选可以优化特征,减少特征冗余,提高分类精度;多源数据结合也可以提高分类精度;在多源数据结合时,光谱特征最重要,LiDAR提取的强度特征相较于高度特征更稳定。

Co-author:张大力

First Author:赵颖慧

Indexed by:Journal paper

Correspondence Author:甄贞

Volume:43

Issue:5

Page Number:103-112

Translation or Not:no

Date of Publication:2019-01-01

Pre One:运用激光雷达数据的单木树冠提取算法对帽儿山林场单木参数估测的影响 Next One:黑龙江省气象因子插值优化及与落叶松NPP相关性分析